
RESEARCH STATEMENT

My research focuses on developing theories and methodologies for drawing statistical inference
based on large and sophisticated data. In addition to my Ph.D. research on the empirical Bayes
inference under the supervision of Professor J. T. Gene Hwang, in the last decade, my research
interests have expanded to more important and fundamental statistical problems including (i)
statistical inference in the presence of unknown yet unequal variances; (ii) model free estimation and
hypothesis testing in sufficient dimension reduction; (iii) multiple hypothesis testing for grouped
hypothesis and high dimensional regression models; and (iv) bias mitigation on dependent data
adaptively collected using multi-armed bandit.

1 Statistical Inference Assuming Unequal and Unknown Variances

While the statistical inference on the mean structures of populations has been extensively studied
in literature, inference regarding variances remains largely on inspecting the model assumptions
for traditional ANOVA. Statistical inference on general hypotheses on the variance components is
challenging and urgently needed. For example, heterogeneity commonly exists in a vast range of
applications, such as in the microarray experiments where the variations across a large number
of transcripts usually vary widely. As noted by George E. P. Box Box (1953), “test on variances
is rather like putting to sea in a rowing boat to find out whether conditions are sufficiently calm
for an ocean liner to leave port!” To meet the immediate challenge of drawing simultaneous in-
ference on many variance components, we have proposed the following methods with outstanding
performances.

I. Parametric empirical Bayes estimator of variances. In a series of work (Zhao, 2010;
Hwang et al., 2009; Zhao and Hwang, 2012; Hwang and Zhao, 2013), we have considered the
shrinkage estimator of the variances and its impact on the inference of the mean parameters.
In all these works, we assumed that the sample variances s2i follows a chi-squared distribution,

i.e., s2i |σ2i ∼ σ2i
χ2
d
d . By putting a log-normal prior distribution on the variances, we developed

a parametric empirical Bayes estimator of the variances which could substantially improve the
performance of inferential procedure for (selected) means.

II. Non-Parametric emprical Bayes estimator of variances. In a recent work with one of
my PhD students (Kwon and Zhao, 2022), we imposed an arbitrary prior on σ2i as σ2i ∼ g(σ2i ) and
derived a Bayes estimator of the variance as
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A unique feature of this estimator is that it only depends on F (s2), the cumulative distribution
function of the sample variances. We call this “F -modeling” based estimator in contrast to the “f -
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modeling” based estimator that relies on the data via its marginal probability density function. The
data-driven version has been easily established by replacing the cumulative distribution function
with its empirical counterpart.

III. Robust variance estimator. All the aforementioned approaches have proven to be useful
in the presence of heterogeneity. However, a major limitation of these methods is the assumption
that the sample variance follows a chi-squared distribution, implying that the parent distribution
is Gaussian. It has been known that tests on the variance are more sensitive to the violation
of Gaussianity (Box, 1953), in Bar and Zhao (2022) we tackle this by removing the normality
assumption on the parent distribution and introduce a bias correction term for log(s2) that depends
on the excess kurtosis of the parent distribution. We have shown that the resulting inference method
is robust when the data generation process deviates from the normal distribution profoundly.

2 Sufficient Dimension Reduction

In the general framework of regression analysis, a primary goal is to infer the relation between
the response variable Y and a p-predictor X. Specifically, one is interested in Y |X, namely, the
conditional distribution of Y on X. Among the literature on sufficient dimension reduction (SDR),
one seeks for a minimal subspace SY |X of the column space of X, called the central subspace, such
that

Y |=X|PSX. (2)

That is, Y is independent from the projection operator PSX. A prevalent method to estimate the
central space S is the sliced inverse regression (SIR), proposed in Li (1991). From a series of work,
we have filled the theoretical gap of SIR under the high dimensional setting.

I. Phase transition. In Lin et al. (2018), we filled the theoretical vacancy on the sufficient
dimension reduction literature by showing that the SIR is consistent if and only if the ratio ρ =
p
n → 0. This implies that the phase transition of SIR is the same as that of the PCA. When ρ does
not converge to zero, one must impose sparsity condition to achieve the estimation consistency. This
result provides a theoretical justification of many regularized methods in the sufficient dimension
reduction.

When p is of the same or a higher order of n, we introduced a Lasso regression method based on
the SIR to obtain an estimate of the SDR space (Lin et al., 2021). The resulting algorithm, Lasso-
SIR, is shown to be consistent and achieves the optimal convergence rate under certain sparsity
conditions when p is of order o(n2λ2), where λ is the generalized signal-to-noise ratio.

II. Detection boundary of single index model. In Lin et al. (2021), we developed the detection
boundary of the single index model y = f(βX, ε). Note that the norm of the parameter vector, a
commonly used quantity for measure the strength of the signal, is not identifiable and no longer
applicable. We then defined the generalized signal-to-noise ratio (gSNR) λ as the unique non-zero
eigenvalue of var[(E(x|y)] and developed the detection boundary of the single index model in terms
of λ. This is the first result to study the detection boundary for the single index model.

III. Limiting distribution of SIR. Regardless of the large amount of investigations on the
consistency of SIR, results on the limiting distribution of SIR are largely missing when p diverges
in n. All the existing distributional results either assume a fixed p or a fixed number of signals (Wu
and Li, 2011). In an on-going project (Zhao and Xing, 2022), based on the newly developed theory
of Gaussian approximation for high dimension, we have derived the limiting distribution of the SIR
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by allowing the dimension p diverges to ∞. This paves the way for providing further statistical
inference for the SIR under high dimensionalities.

3 Multiple Hypothesis Testing

Multiple hypotheses testing is the key in modern sciences when the number of hypotheses of interest
is very large. A tremendous upsurge of research has taken place in this area in the last three
decades. Since I joined Temple University, I have been working on this area and developed a series
of important methods to address various fundamental issues.

I. Group hypothesis. In an sole-authored paper (Zhao, 2022), I have theoretically investigated
the pros and cons of the p-value based testing method and the local false discovery rate (FDR) based
testing method. In He, Sarkar, and Zhao (2015), we have studied optimal multiple testing procedure
incorporating a severity function reflecting unequal penalty of type II errors. When hypotheses
admit grouping structures, we proposed an optimal method in Liu et al. (2016) controlling both
the overall and the within-group FDR. In Sarkar and Zhao (2017), we continues the line of research
initiated in Liu et al. (2016) on developing a novel framework for multiple testing of hypotheses
grouped in a one-way classified form using the hypothesis-specific local FDRs, which effectively
captures the dependence structure due to the grouping.

II. Multiple testing for linear regression models. Many widely-accepted FDR controlling
methods, such as the Benjamini-Hochberg (BH) method, start with independent and valid p-values.
There are two challenges when applying these techniques to the high-dimensional linear regression
model: (i) the p-values are difficult to obtain, and (ii) the p-values are usually dependent. In Ji
and Zhao (2014), we studied the rate optimal multiple testing procedure from the perspective of
variable selection for high-dimensional regression models with the signals so weak and rare that
the “selection consistency” is not possible. This is the first result on the rate optimality of testing
procedures for high-dimensional regression models. In Xing et al. (2021), we proposed the Gaussian
Mirror method, which creates for each predictor variable a pair of mirror variables by adding and
subtracting a randomly generated Gaussian perturbation. The mirror variables naturally lead to
test statistics which are symmetric with respect to zero under the null. This symmetry property
allows us to estimate the false discovery proportion and easily control the FDR.

III. Model-free multiple testing. The Gaussian mirror we introduced in Xing et al. (2021) is
powerful in detecting the signals for the high-dimensional linear regresion models. In an on-going
project (Zhao and Xing, 2022), we further studied the model-free multiple testing problem. We
consider the general multiple index model

Y = f(β1X, · · · ,βDX, ε),

where the link function f(·) is unknown. Let S = span(β1, · · · ,βD) be the central space. For each
covariate, we want to test whether this covariate plays any role in the central subspace S. In this
paper, we estimated βi’s using SIR without knowing the link function and constructed the mirror
statistic. Based on the limiting distribution of SIR, these statistics are symmetric with respect to
zero under the null. We then proposed a method, named Model-free Multiple Testing using Mirror
Statistics (MMM). It is shown that MMM controls the FDR at the desired level well and is more
powerful than its competitors. We are in the final stage of writing this paper.

V. Non-parametric testing. Along with the century-long advancement of data analysis across
a tremendous variety of scientific fields, the regression model is the most powerful and the most
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widely used tool to reveal scientific laws. For the regression model, three fundamental statistical as-
sumptions serve as the cornerstones yet have been often adopted incautiously: (A1) the population
of random noises admits normality or similar distributional assumptions; (A2) the random noises
are identically and independently distributed; and (A3) the exogeneity such that the covariates
are not dependent on the random noises. Though statistical tests developed specifically for one
of the three assumptions scattered in the literature, a unified powerful validation procedure on all
three assumptions remains a long-lasting missing component in statistics and related data-driven
research.

In Zhang et al. (2021), we studied nonparametric dependence detection with the proposed
Binary Expansion Approximation of UniformiTY (BEAUTY) approach, which generalizes the
celebrated Euler’s formula, and approximates the characteristic function of any copula with a
linear combination of expectations of binary interactions from marginal binary expansions. This
novel theory enables a unification of many important tests through approximations from some
quadratic forms of symmetry statistics, where the deterministic weight matrix characterizes the
power properties of each test. To achieve a robust power, we study test statistics with data-
adaptive weights, referred to as the Binary Expansion Adaptive Symmetry Test (BEAST). It is
shown that the BEAST is powerful in testing of the uniformity and testing of dependence which can
be used to test the assumptions (A1) and (A3). In an on-going project, we are using the BEAUTY
framework to construct a non-parametric testing method to detect whether a set of observations
are independent (A2). The preliminary results are very promising.

4 Statistical Inference for Adaptively Collected and Dependent
Data

In both statistical research and broad data-driven applications, the random sampling is an impor-
tant technique ensures that results from the sample approximate what would have been obtained
if the entire population had been measured. Many inferential methods are legitimate when we
have a random sample. However, when the data are collected adaptively and are dependent by
nature, even the sample mean becomes a biased estimator. We investigated statistical issues for
the multi-armed bandit problem (MAB).

The MAB can be seen as a set K-arms and each arm is associated with a distribution Pk. The
customer iteratively plays one lever per round (t) by selecting one arm based on the historical data,
denoted as It, and generating an observation Yt from the distribution associated with this arm. Let
(Yt, It), t = 1, 2, · · · , T be the data generated from the MAB algorithm.

I. Pre-data collection bias mitigation. Let µk be the mean of Pk and the sample mean

µ̂k =

∑n
t=1 Yt1(It = k)

Nk(n)

be the estimator of µk where Nk(n) =
∑n

t=1 1(It = k) is the number of times that the k-th arm is
pulled. Because of the genuine dependence among the observations due to the sequential allocation,
µ̂k is known to be biased (Nie et al., 2018; Neel and Roth, 2018). In Wang et al. (2022), we
provided a new MAB algorithm, randomized multi-arm bandits, which combines a randomization
step with any chosen MAB algorithm. This randomziation step weaken the serial dependence and
can mitigate the bias substantially without affecting its regret asymptotically.

II. Post-data collection bias mitigation. With data collected by a certain MAB algorithm,
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we considered the statistical inference on parameters associated with the distributions Pk’s (Wang
and Zhao, 2022). We provided an explicit formula to understand the source of bias. For example,
the bias of the sample mean µ̂k admits

E [µ̂k]− µk = −Cov(µ̂k, Nk(n))

E[Nk(n)]
.

For a given data, we use the resampling method to approximate the bias term. It is shown that the
proposed method could substantially mitigate the bias and lead to methods with good inferential
properties. We have further developed the bias formulas and the resampling methods for more
general cases including the context bandits and other estimators such as the sample variance and
empirical distribution functions. This bias correction could help with the inference, which in turn
could improve the adative design of the experiments. It has the potential to be further applied in
the reinforcement learning.

5 Summary

My research focused on developing methods and theories to address some fundamental issues such
as heterogeneity and dependence. My research after tenure promotion has resulted in publications
in the prestigious journals, including, two papers on Journal of American Statistician Association,
one paper on Annals of Statistics, one paper on Biometrika, one single-author paper on TEST, and
four others. I have four papers under different stages of the reviewing process and four papers to
be submitted.

I have received the grant (IIS-1633283) from the National Science Foundation. Additionally,
I have served as an associate editor of the ASA journal “Statistical Analysis and Data Mining”
from 2013. I have served as the Editorial board of reviewers for the “Journal of Machine learning
research” from 2020. I have served in the NSF panel. I have been invited to peer-review manuscripts
for top journals such as JASA, JRSSB, Biometrika and Annals of Statistics. I have been invited
to present my research for multiple conferences and department colloquiums. In the future, I will
endeavor to maintain my productivity in high quality research and collaborative works.
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